Mutation of KCNK5 or Kir3.2 potassium channels in mice does not change minimum alveolar anesthetic concentration.
نویسندگان
چکیده
UNLABELLED Several reports suggest that clinically used concentrations of inhaled anesthetics can increase conductance through noninactivating potassium channels and that the resulting hyperpolarization might decrease excitability, thereby leading to the anesthetic state. We speculated that animals deficient in such potassium channels might be resistant to the effects of anesthetics. Thus, in the present study, we measured the minimum alveolar anesthetic concentration (MAC) needed to prevent movement in response to a noxious stimulus in 50% of adult mice lacking functional KCNK5 potassium channel subunits and compared these results with those for heterozygous and wild-type mice. We also measured MAC in weaver mice that had a mutation in the potassium channel Kir3.2 and compared the resulting values with those for wild-type mice. MAC values for desflurane, halothane, and isoflurane for KCNK5-deficient mice and isoflurane MAC values for weaver mice did not differ from MAC values found in control mice. Our results do not support the notion that these potassium channels mediate the capacity of inhaled anesthetics to produce immobility. In addition, we found that the weaver mice did not differ from control mice in their susceptibility to convulsions from the nonimmobilizers flurothyl [di-(2,2,2,-trifluoroethyl)ether] or 2N (1,2-dichlorohexafluorocyclobutane). IMPLICATIONS Mice harboring mutations in either of two different potassium channels have minimum alveolar anesthetic concentration (MAC) values that do not differ from MAC values found in control mice. Such findings do not support the notion that these potassium channels mediate the capacity of inhaled anesthetics to produce immobility in the face of noxious stimulation.
منابع مشابه
T-type Calcium Channels in Mice Does Not Change Anesthetic Requirements for Loss of the Righting Reflex and Minimum Alveolar Concentration but Delays the Onset of Anesthetic Induction
Background: T-type calcium channels regulate neuronal membrane excitability and participate in a number of physiologic and pathologic processes in the central nervous system, including sleep and epileptic activity. Volatile anesthetics inhibit native and recombinant T-type calcium channels at concentrations comparable to those required to produce anesthesia. To determine whether T-type calcium ...
متن کاملThe ventilatory stimulant doxapram inhibits TASK tandem pore (K2P) potassium channel function but does not affect minimum alveolar anesthetic concentration.
TWIK-related acid-sensitive K(+)-1 (TASK-1 [KCNK3]) and TASK-3 (KCNK9) are tandem pore (K(2P)) potassium (K) channel subunits expressed in carotid bodies and the brainstem. Acidic pH values and hypoxia inhibit TASK-1 and TASK-3 channel function, and halothane enhances this function. These channels have putative roles in ventilatory regulation and volatile anesthetic mechanisms. Doxapram stimula...
متن کاملG-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons.
Acute opioid administration causes hyperpolarization of locus ceruleus (LC) neurons. A G-protein-gated, inwardly rectifying potassium (GIRK/K(G)) conductance and a cAMP-dependent cation conductance have both been implicated in this effect; the relative contribution of each conductance remains controversial. Here, the contribution of K(G) channels to the inhibitory effects of opioids on LC neuro...
متن کاملPore mutation in a G-protein-gated inwardly rectifying K+ channel subunit causes loss of K+-dependent inhibition in weaver hippocampus.
Weaver (wv) mice carry a point mutation in the pore region of a G-protein-gated inwardly rectifying K+ channel subunit (Kir3.2). wvKir3.2 conducts inward currents that may cause the loss of neurons in the cerebellum and substantia nigra. Although Kir3.2 is widely expressed in the CNS, significant morphological or physiological changes have not been reported for other brain areas. We studied the...
متن کاملRole of potassium channels in isoflurane- and sevoflurane-induced attenuation of hypoxic pulmonary vasoconstriction in isolated perfused rabbit lungs.
BACKGROUND Although potassium channels are thought to be responsible for the initiation of hypoxic pulmonary vasoconstriction (HPV), their role in the HPV-inhibitory effect of volatile anesthetics is unclear. The current study tested if the HPV-inhibitory effect of isoflurane and sevoflurane can be affected by changing the potassium-channel opening status with specific potassium-channel inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesia and analgesia
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2003